CHEN. 3030 Fluid Mechanics (Section 202)

Homework Assignment \#4 Spring 2017

Fluid Kinematics

An approximate velocity field for steady, incompressible 2-D flow through a particular converging duct is given by

$$
\overrightarrow{\mathrm{v}}=(0.5+1.2 \mathrm{x}) \hat{\mathrm{i}}-1.2 \mathrm{y} \hat{\mathrm{j}}
$$

where the units for v are in ft / s. Note that this equation ignores viscous effects along the walls, but it is a reasonable approximation throughout the majority of the flow field.

This system will be used for Problems $1-3$.

1. With the flow field given above, determine the time-dependent position of a fluid particle that initially starts at $x(0)=x_{0}=0$ and $y(0)=y_{0}$. That is, find $x(t)$ and $y(t)$ given $\left(0, y_{0}\right)$ as the initial particle position.

Once you have a general result for $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ for a arbitrary y_{o} values, numerically evaluate and plot the particle trajectory for five (5) specific values of y_{0}. -- that is, let $y_{0}=-8,-3,0$, 3 , and 8 ft . Put all five curves on the same plot. Use $0 \leq \mathrm{t} \leq 2.5$ seconds in your evaluations. Do the $y(t)$ vs. $x(t)$ trajectories behave as expected for a converging duct? Explain...
2. Determine an expression for the acceleration field for fluid particles passing through the duct described above. What are the acceleration vector and magnitude at the point $(x, y)=(1,4)$?
3. For the above converging duct flow geometry, generate an analytical expression for the flow streamlines. Once you have a general result for the stream function, compute the values of the arbitrary constant for the following x, y pairs; $(0,-8),(0,-3),(0,0),(0,3)$, and $(0,8)$ and plot the five (5) specific streamlines on the same plot over the range $0 \leq \mathrm{x} \leq 8 \mathrm{ft}$.

How does this plot compare to the set of pathlines generated in Prob. 1? Explain...
4. A flow field is periodic in that the streamline pattern repeats at definite intervals. For the first second the field is moving upward at 45° to the right and, in the next second, the flow is moving downward at 45° to the right, etc., as shown in the sketch below. The speed of flow is constant at $10 \mathrm{~m} / \mathrm{s}$.

After 2.5 s the pathline of a particle released at point A at time zero is also shown in the sketch.

If dye is emitted in a continuous stream from point A starting at time zero, carefully draw the resulting streakline at $\mathrm{t}=2.5 \mathrm{~s}$. Explain your plot.

(a) Streamlines

(b) Pathline
5. For a given hypothetical 2-D flow, the space-independent velocity components are given by

$$
\begin{array}{lccc}
u=-2 \mathrm{~m} / \mathrm{s} & \mathrm{v}=0 \mathrm{~m} / \mathrm{s} & \text { for } 0 \leq t \leq 4 \mathrm{~s} \\
\mathrm{u}=1 \mathrm{~m} / \mathrm{s} & \mathrm{v}=-2.5 \mathrm{~m} / \mathrm{s} & \text { for } & 4 \leq t \leq 8 \mathrm{~s}
\end{array}
$$

A dye streak was started at a point in the flow field at time $t=0$, and the path of a single particle in the fluid was also traced from the same point starting at the same time.

Draw to scale the streakline, pathline of the particle, and streamlines at time $t=8 \mathrm{~s}$ for this flow field. Draw and label these curves carefully!

