CHEN. 3030 Fluid Mechanics

Short Quiz: Viscous Internal Flows

Part a: In class we showed that the velocity distribution in a circular pipe under laminar flow conditions is given by

$$
\mathrm{u}(\mathrm{r})=-\frac{\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)}{4 \mu} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{P}+\gamma \mathrm{h})
$$

If the pipe inside radius is R, for a given pressure plus elevation gradient, determine expressions for the volumetric flow rate, Q, and the average fluid velocity, v, within the pipe. Be formal!!!

Part b: For the specific case shown in the sketch with oil as the working fluid, determine Q if the mercury manometer reads $\mathrm{h}=4 \mathrm{~cm}, \rho_{\text {oil }}=880 \mathrm{~kg} / \mathrm{m}^{3}$, $\mu_{\text {oil }}=0.068 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$, and $\rho_{\mathrm{Hg}}=13550 \mathrm{~kg} / \mathrm{m}^{3}$. Note also that, at the end, you should always validate the original laminar flow assumption. Use the back side of the page, as needed, for you work...

Note: If you are unsuccessful with Part a, use $Q=-\frac{d}{d x}(P+\gamma h) \frac{\pi R^{4}}{16 \mu}$ to do the Part b calculations.

