CHEN. 3030 Fluid Mechanics
 Short Quiz: The Energy Equation

A pump draws water through a 20 cm diameter suction pipe and discharges it to the atmosphere through a 15 cm diameter pipe. The flow velocity at the exit is $5 \mathrm{~m} / \mathrm{s}$. To what height, h, above the water surface at point A can the water be raised if a 35 kW pump is used?
Assume that the pump operates at 70\% efficiency and that the head loss, h_{L}, in the full system is given by

$$
h_{L}=K\left(\frac{v_{\mathrm{C}}^{2}}{2 g}\right)
$$

where v_{C} is the average water speed at point C and $\mathrm{K}=2$ is the loss coefficient.

Recall that the power added to the fluid by a pump is given by

$$
\mathrm{P}_{\mathrm{A}}=\gamma \mathrm{Qh}_{\mathrm{A}}=\rho \mathrm{gQh}_{\mathrm{A}}=\dot{\mathrm{m}}_{\mathrm{gh}}^{\mathrm{A}}
$$

where h_{A} is the head added by the pump, γ is the specific weight, etc. using standard terminology.

