CHEN. 3030 Fluid Mechanics

Short Quiz: Viscosity and Shear Stress Relationship for Newtonian Fluids

A solid circular cylinder of diameter d and length ℓ slides inside a vertical smooth pipe that has an inside diameter D as shown in the sketch. The small space between the cylinder and the pipe is lubricated with an oil film that has viscosity μ. Assume that the cylinder has a weight W and is concentric with the pipe as it falls. Also assume that the velocity profile within the small gap is linear.
a. Under the above conditions, derive a formula for the steady state velocity of the cylinder in the vertical pipe. Explain your logic.
b. Using your development from Part a, find the terminal velocity of the cylinder using the following data:

$\mathrm{d}=10 \mathrm{~cm}$
$\mathrm{D}=10.05 \mathrm{~cm}$
$\ell=20 \mathrm{~cm}$
$\mathrm{W}=20 \mathrm{~N}$
lubricant: SAE 20 W oil at $10^{\circ} \mathrm{C}$ with $\mu=0.3 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$

