Fluid Mechanics
 University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Name: \qquad Student ID: \qquad
Final Exam; Time: 3:00PM - 6:00PM; Exam type: Open book (Only text book is allowed) without any additional writing or attachment. (Do all six (6) problems, with each problem having equal weight)

Q1. Basic Concepts and Fluid Properties

a. Kerosene is mixed with $10 \mathrm{ft}^{3}$ of ethyl alcohol so that the volume of the mixture in the tank becomes $14 \mathrm{ft}^{3}$. Both fluids are at room temperature. Determine the specific gravity and the specific weight of the mixture.
b. The velocity profile for a thin film of a Newtonian fluid with $\mu=0.56 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ that is confined between the plate and a fixed surface as shown in the sketch is defined by $u=\left(10 y-0.25 y^{2}\right)$ mm / s, where y is in mm . Determine the force \mathbf{P} that must be applied to the plate to give this motion. The plate has a surface area of $4000 \mathrm{~mm}^{2}$ in contact with the fluid.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q2. A rocket motor is operated in steady state with the conditions shown in the diagram. In particular, the combustion chamber operates at $4000^{\circ} \mathrm{R}$ and 400 psia but the gas exit conditions are near atmospheric pressure (15 psia) and the temperature in Fahrenheit units is $1100^{\circ} \mathrm{F}$. The products of combustion flowing out the exhaust nozzle approximate a perfect gas with gas constant $\mathrm{R}=$ $1775 \mathrm{ft}-\mathrm{lbf} / \mathrm{slug}-\mathrm{R}$.

For the given conditions, calculate the exit velocity, v_{2}, in ft / s.

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q3. Determine the difference in height h of the water column in the manometer if the flow of oil through the pipe is $0.04 \mathrm{~m}^{3} / \mathrm{s}$. At flow conditions, the oil density is $875 \mathrm{~kg} / \mathrm{m}^{3}$ and the water density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Q4. The reducing elbow shown in the sketch lies in the horizontal plane. It is only one component of a long piping system within a chemical processing plant. A fluid with specific weight $\gamma=8.615 \mathrm{kN} / \mathrm{m}^{3}$ enters the bend with a velocity of $3.5 \mathrm{~m} / \mathrm{s}$ and a pressure of 280 kPa . The inlet pipe diameter to the reducer is 200 mm and the outlet diameter is 80 mm , and the bend forms a 65° angle as shown.
Neglecting energy losses in the bend, estimate the x and y -directed reaction force components needed to hold the elbow section in place. Note: There are no net gravity effects here since the elbow is in the horizontal $x-y$ plane
 (i.e. the sketch is a top view of the elbow).

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017
(Extra Page 1)

Fluid Mechanics
 University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q5. Water at $T=20^{\circ} \mathrm{C}$ flows from the open tank through the $50-\mathrm{mm}$-diameter galvanized iron pipe. Determine the discharge at the end B if the globe valve is fully opened. The length of the pipe is 50 m . Include the minor losses of the flush entrance, the four elbows, and the globe valve. Use moody diagram to find the friction factor along the pipe length.

Q6. You can choose one of the following two problems, but not both (if you do both, only one will be counted)

Part a. A smooth horizontal pipe with $\mathrm{D}=4$ inches is 12 ft long and transports $70^{\circ} \mathrm{F}$ water. The measured pressure drop along the pipe is $0.170 \mathrm{psi} / \mathrm{ft}$. With this information, estimate the shear stress on the walls of the pipe, the velocity along the pipe's centerline, and the thickness of the viscous sublayer for this turbulent flow problem. Hint: Use the turbulent flow correlations given in Chapter 9 of your text by Hibbeler then, at the end, always check the Reynolds number to make sure that the flow is really turbulent.

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q6. Part b. Water flows down a long, straight, inclined pipe of diameter D and length L. There is no forced pressure gradient between points 1 and 2 ; in other words, the water flows through the pipe by gravity alone, and $\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{\mathrm{atm}}$. The flow is steady, fully developed, and laminar. We adapt a coordinate system in which x flows the axis of the pipe. We would like to generate an expression for average velocity V as a function of the given parameters, $\rho, g, D, \Delta z, \mu$, and L. (b) Use dimensional analysis to generate a dimensionless expression for V as a function of the given parameters. Construct a relationship between your results that matches the exact analytical expression.

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017
(Extra Page 2)

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

DIMENSION	METRIC		METRIC/ENGLISH
Viscosity, kinematic	$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10^{4} \mathrm{~cm}^{2} / \mathrm{s} \\ & 1 \text { stoke }=1 \mathrm{~cm}^{2} / \mathrm{s}=10^{-4} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s}=3.875 \times 10^{2} \mathrm{ft}^{2} / \mathrm{h} \\ & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s} \end{aligned}$
Volume	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{5} \mathrm{~cm}^{3}(\mathrm{cc})$		$\begin{aligned} & 1 \mathrm{~m}^{3}=6.1024 \times 10^{4} \mathrm{in}^{3}=35.315 \mathrm{ft}^{3} \\ & \quad=264.17 \text { gal (U.S.) } \\ & 1 \text { U.S. gallon }=231 \mathrm{in}^{3}=3.7854 \mathrm{~L} \\ & \text { l flounce }=29.5735 \mathrm{~cm}^{3}=0.0295735 \mathrm{~L} \\ & \text { l U.S. gatlon }=128 \mathrm{fl} \text { ounces }^{2} \end{aligned}$
Volume flow rate	$1 \mathrm{~m} / \mathrm{s}=60,000 \mathrm{Umin}=10^{6} \mathrm{~cm}^{3} / \mathrm{s}$		$\begin{aligned} 1 \mathrm{~m}^{3} / \mathrm{s} & =15.850 \mathrm{ga} / \mathrm{min}=35.315 \mathrm{ft}^{3} / \mathrm{s} \\ & =2118.9 \mathrm{ft}^{3} / \mathrm{min}(\text { CFM }) \end{aligned}$
 *Eact corversich iector between meirit and English units.			
Some Physical Constants			
PHYSICAL CONSTANT		METRIC	ENGLISH
Standard acceleration of gravity Standard atmospheric pressure		$\begin{aligned} g= & 9.80665 \mathrm{~m} / \mathrm{s}^{2} \\ P_{\mathrm{a}: \mathrm{m}} & =1 \mathrm{~atm}=101.325 \mathrm{hPa} \\ & =1.01325 \mathrm{bar} \\ & =760 \mathrm{~mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right) \\ & =10.3323 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} g= & 32.174 \mathrm{f} / \mathrm{s}^{2} \\ P_{\mathrm{atm}} & =1 \mathrm{~atm}=14.696 \mathrm{psia} \\ & =2116.2 \text { iof/ft } \\ & =29.9213 \text { inches } \mathrm{Hg}\left(32^{\circ} \mathrm{F}\right) \\ & =406.78 \text { inches } \mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right) \end{aligned}$
Universal gas constant		$\begin{aligned} R_{u} & =8.31447 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\ & =8.31447 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kmol} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} R_{u} & =1.9859 \mathrm{Btu} / \mathrm{bmol} \cdot \mathrm{R} \\ & =1545.37 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbmol} \cdot \mathrm{R} \end{aligned}$
Commonly Used Properties			
PROPERTY		METRIC	ENGLISH
Air at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 1 atm			
Specific gas constant*		$\begin{aligned} R_{\mathrm{aii}} & =0.2870 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =287.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} R_{\mathrm{ait}} & =0.05855 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =53.34 \mathrm{ft} \cdot \mathrm{lbt} / \mathrm{bm} \cdot \mathrm{R} \\ & =1716 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Specific heat ratio		$k=c_{p} / c_{v}=1.40$	$k=c_{p} / c_{v}=1.40$
Specific heats		$\begin{aligned} c_{p} & =1.007 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =1007 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \\ c_{v} & =0.7200 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =720.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c_{P} & =0.2404 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =187.1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{bm} \cdot \mathrm{R} \\ & =6019 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \\ c_{v} & =0.1719 \mathrm{Btu} / \mathrm{lbm} \cdot R \\ & =133.8 \mathrm{ft} \cdot \mathrm{lb} / / \mathrm{bm} \cdot \mathrm{R} \\ & =4304 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Speed of sound		$c=343.2 \mathrm{~m} / \mathrm{s}=1236 \mathrm{~km} / \mathrm{h}$	$c=1126 \mathrm{ft} / \mathrm{s}=767.7 \mathrm{mi} / \mathrm{h}$
Density		$\rho=1.204 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=0.07518 \mathrm{lom} / \mathrm{ft}^{3}$
Viscosity		$\mu=1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=1.227 \times 10^{-5} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.516 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.632 \times 10^{-4} \mathrm{ft}^{2} / \mathrm{s}$
Liquid water at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 1 atm			
Specific heat ($c=c_{p}=c_{v}$)		$\begin{aligned} c & =4.182 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =4182 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c & =0.9989 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =777.3 \mathrm{ft} \cdot \mathrm{lbf/lbm} \cdot \mathrm{R} \\ & =25.009 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Density		$\rho=998.0 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=62.30 \mathrm{bm} / \mathrm{lt}^{3}$
Viscosity		$\mu=1.002 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=6.733 \times 10^{-4} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.004 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.081 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}$

- Independent of pressure or temperature

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering

 CHEN. 3030 - Spring 2017

University of Massachusetts, Lowell - Department of Chemical Engineering

 CHEN. 3030 - Spring 2017Solution
Q1.

Q2.

Q3.
Solution: Apply Bernoullis equation between points A an B
Given,
At stagnant point, $B, v_{B}=0$
Datum is passing through points
A and B. $z_{A}=z_{B}=0$
Oil density, $\rho_{0}=875 \mathrm{~kg} / \mathrm{m}^{3}$
Water density, $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Din, $D_{A}=300 \mathrm{~mm}$
$D_{i a}, D_{B}=150 \mathrm{~mm}$
Flownate, $Q=0.04 \mathrm{~m}^{3} / \mathrm{s}$
$Q=V_{A} A_{A}$
Manometer equation:
$\begin{array}{ll}\Rightarrow & 0.04 \mathrm{~m}^{3} / \mathrm{s}=V_{A}\left[\frac{1}{4} \pi\left(\frac{300}{1000}\right)^{2}\right] \mathrm{m}^{2} \\ \Rightarrow & V_{A}=0.5661 \mathrm{~m} / \mathrm{s}\end{array}$

Q4.

$$
\begin{aligned}
& \begin{aligned}
& P_{A}+\rho_{0} g h_{B C}+\rho_{w} g h_{C D}-\rho_{0} g h_{D B}=P_{B} \\
\Rightarrow & \rho_{0} g a+\rho_{D} g h-\rho_{g}(h+a)=P-P
\end{aligned} \\
& \begin{aligned}
\Rightarrow \quad \rho_{0} g a+\rho_{w} g h-\rho_{0} g h-\rho_{0} g a=P_{B}-\rho_{A}
\end{aligned} \\
& \begin{array}{l}
\Rightarrow h\left(\rho_{w}-\rho_{0}\right) g=\rho_{B}-\rho_{A} \\
\Rightarrow h=\frac{\rho_{B}-\rho_{A}}{\left(\rho_{w}-\rho_{0}\right) g}
\end{array} \\
& \left.\Rightarrow h=\frac{140.2 \mathrm{~N} / \mathrm{m}^{2}}{(1000-875) \mathrm{kg} / \mathrm{m}^{3} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}} \text { [Replace (B) (p) from eq }{ }^{3}(1)\right] \\
& \begin{aligned}
&=(1000-875) \mathrm{kg} / \mathrm{m}^{3} \times 9.81 \mathrm{~m} \\
& \Rightarrow h=0.1143 \mathrm{~m} \\
& \Rightarrow h=114.3 \mathrm{~mm} \quad \text { (Ans.) }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{P}}{\rho \circ g}+\frac{v_{A}^{2}}{2 g}+Z_{A}=\frac{P_{B}}{\rho_{0 g}}+\frac{v_{B}^{2}}{2 g}+Z_{B} \rightarrow 0 \\
& \Rightarrow \frac{\rho_{A}}{\rho_{0} g}+\frac{v_{A}{ }^{2}}{2 g}=\frac{\rho_{B}}{\rho_{0} g} \\
& \left.\Rightarrow \quad \frac{P_{A}}{P_{0}}+\frac{V_{A}{ }^{2}}{2}=\frac{P_{B}}{\rho_{0}} \text { [Multiply by } g^{\prime}\right] \\
& \Rightarrow \quad \frac{\rho_{A}}{8751 \mathrm{~kg} / \mathrm{m}^{3}}+\frac{\left(0.5661 \mathrm{~m}(\mathrm{~s})^{2}\right.}{2}=\frac{P_{B}}{875 \mathrm{~kg} / \mathrm{m}^{3}} \\
& \Rightarrow \frac{P_{B}-P_{A}}{875 \mathrm{~kg} / \mathrm{m}^{3}}=0.1602 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& \begin{array}{l}
\Rightarrow P_{B}-P_{A}=\left(0.1602 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)\left(875 \mathrm{~kg} / \mathrm{m}^{3}\right) \frac{(1 \mathrm{~N})}{\left(1 \mathrm{kgm} / \mathrm{s}^{2}\right)} \\
\Rightarrow P_{B}-\rho_{A}=140.2 \mathrm{~N} / \mathrm{m}^{2}
\end{array}
\end{aligned}
$$

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q5.

Solution:

Assumption: (1) Water is incompressible.
The Reynold's number, $R_{e}=\frac{D V}{2}$

$$
\begin{aligned}
& =\frac{\left(50 \times 10^{-3} \mathrm{~m}\right) \mathrm{V}}{1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}} \\
& =\left(5 \times 10^{4}\right) \mathrm{V}
\end{aligned}
$$

Major head loss from A to B :

$$
\begin{aligned}
h_{L} & =f \frac{L}{D} \cdot \frac{v^{2}}{2 g} \\
\Rightarrow h_{L} & =f\left(\frac{50 \mathrm{~m}}{0.05 \mathrm{~m}}\right) \frac{v^{2}}{2 \cdot\left(9.8 / \mathrm{m} / \mathrm{s}^{2}\right)} \\
\Rightarrow h_{L} & =50.968 f^{2} v^{2}
\end{aligned}
$$

Minors head Coss:
1 Fully opened globe value, $K_{L}=10$
490° Elbows, $K_{L}=0.9$
1 Flush entrance, $K_{L}=0.5$
$\begin{aligned} \sum K_{L} & =K_{L \text {, globe value }}+4 K_{L, \text { elbows }}+K_{L \text {, fushentrance }} \\ & =10+4 \times 0.9+0.5 \\ & =14.1\end{aligned}$
$\left(h_{L}\right)_{\text {minoan }}=\sum K_{L} \frac{v^{2}}{2 g}=14.1 \times \frac{v^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.7187 v^{2}$
Applying energy equation:
$\frac{\rho_{A}}{\gamma}+\frac{v_{A}^{2}}{2 g}+z_{A}+h_{\text {pump }}=\frac{P_{B}}{\gamma}+\frac{v_{B}^{2}}{2 g}+z_{B}+h_{\text {massive }}+h_{L}+\left(h_{L}\right)_{\text {miners }}$
$\Rightarrow 0+0+5 m+0=0+\frac{V_{B}^{2}}{2 g}+1 m+0+h_{L}+\left(h_{L}\right)_{\text {oimula }}$
$\Rightarrow \frac{L^{2}}{2 \times\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}+h_{L}+\left(h_{L}\right)_{\text {minors }}=4 \mathrm{~m}$

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

$$
\begin{aligned}
& \Rightarrow 0.05097 v^{2}+50.968 f v^{2}+0.7187 v^{2}=4 \\
& \Rightarrow 0.7697 v^{2}+50.968 f v^{2}=4 \\
& \Rightarrow v=\frac{2}{\sqrt{50.968 f+0.7697}}
\end{aligned}
$$

For galvanized iron:

$$
\begin{aligned}
E & =0.15 \mathrm{~mm} \\
D & =50 \mathrm{~mm} \\
\therefore \frac{\varepsilon}{D} & =\frac{0.15 \mathrm{~mm}}{50 \mathrm{~mm}}=0.003
\end{aligned}
$$

For Bred iteration, the assumed ' f ' is the same as the 'f'from Moody diagram. Thus, $V=1.349 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& Q=V A=(1.349 \mathrm{~m} / \mathrm{s}) \times \frac{\pi}{4}\left(\frac{50}{1000}\right)^{2} \mathrm{~m}^{2} \\
& \Rightarrow Q=0.00265 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

.
(A) + Ans.

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q6a.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q6b.
We are to analyze this problem three ways: with the control volume technique, with the differential technique, and with dimensional analysis, and we are to compare the results.
(a) An exact analysis of this flow was performed in Problem 9-100. We refer to the solution of that problem and do not show the details here. The average velocity through the pipe was found to be

$$
V=\frac{R^{2}}{8 \mu} \rho g \sin \alpha
$$

But $R=D / 2$, and from the figure provided in the problem statement we see that $\sin \alpha=\Delta z / L$. Thus, our result is
V from differential analysis:

$$
\begin{equation*}
V=\frac{\rho g D^{2} \Delta z}{32 \mu L} \tag{4}
\end{equation*}
$$

(b) we perform a dimensional analysis. There are 7 parameters in the problem: V as a function of $\rho, g, D, \Delta z, \mu$, and L. There are three primary dimensions represented in the problem, namely m, L, and t . Thus we expect $7-3=4$ Пs. We choose three repeating variables, ρ, g, and D. The Π s are
Dimensionless parameters: $\quad \Pi_{1}=\frac{V}{\sqrt{g D}} \quad \Pi_{2}=\frac{\rho D \sqrt{g D}}{\mu} \quad \Pi_{3}=\frac{\Delta z}{D} \quad \Pi_{4}=\frac{L}{D}$
The first Π is a Froude number and the second Π is a Reynolds number. The dimensionless relationship is

Result of dimensional analysis:

$$
\begin{equation*}
\frac{V}{\sqrt{g D}}=f\left(\frac{\rho D \sqrt{g D}}{\mu}, \frac{\Delta z}{D}, \frac{L}{D}\right) \tag{5}
\end{equation*}
$$

