University of Massachusetts, Lowell - Department of Chemical Engineering

 CHEN. 3030 - Spring 2017Name: \qquad Student ID: \qquad
Exam 2; Time: 5:00PM - 7:00PM; Location: Ball Hall 214; Exam type: Open book (Only text book is allowed) without any additional writing or attachment. (Do all five (5) problems, with each problem having equal weight.)

Q1. The Venturi meter shown has a U-tube manometer to measure the velocity of flow. When no flow occurs, the mercury column is balanced and its top is 300 mm below the throat. Compute the volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$) that will cause the Hg to rise to the throat level.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q2. The pump shown in the diagram adds 20 kW of power to the flowing water. The only major loss in the system is that which occurs across the filter at the inlet of the pump. With the data given, determine the head loss for this filter.

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q3. The demand for electric power is usually much higher during the day than it is at night, and utility companies often sell power at night at much lower prices to encourage consumers to use the available power generation capacity and to avoid building new expensive power plants that will be used only a short time during peak periods. Utilities are also willing to purchase power produced during the day from private parties at a high price. Suppose a utility company is selling electric power for $\$ 0.03 / \mathrm{kWh}$ at night and is willing to pay $\$ 0.08 / \mathrm{kWh}$ for power produced during the day. To take advantage of this opportunity, an entrepreneur is considering building a large reservoir 50 m above the tank level, pumping water from the lake to the reservoir at night using cheap power, and letting the water flow from the reservoir back to the lake during the day, producing power as the pump-motor operates as a turbine- generator during reverse flow. Preliminary analysis shows that a water flow rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ can be used in either direction, and the irreversible head loss of the piping system is 4 m . The combined pump-motor and turbine-generator efficiencies are expected to be 75 percent each. Assuming the system operates for 10 hr each in the pump and turbine modes during a typical day, determine the potential revenue this pump-turbine system can generate per year.

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q4. Determine the magnitude and direction of the anchoring force needed to hold the horizontal elbow and nozzle combination shown in Figure. Atmospheric pressure is 100 kPa . The gage pressure at section 1) is 100 kPa . At section (2), the water exits to the atmosphere.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q5. The engine oil in the pipe shown is driven by the pressure drop established by a pump in the piping system with flow from lower left to upper right. However, when the pump is stopped, the flow is in the opposite direction. The pipe is positively inclined $\left(30^{\circ}\right)$. The engine oil temperature is $\mathrm{T}=60^{\circ} \mathrm{C}$. The circular pipe has a radius of 5 cm and the pipe length is 200 cm . The viscosity and density of the oil at $T=60^{\circ} \mathrm{C}$ are $72.5 \times 10^{-3} \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})$ and $864 \mathrm{~kg} / \mathrm{m}^{3}$, respectively.
a) If the pump establishes a $\Delta p=\mathrm{p}_{0}-\mathrm{p}_{\mathrm{L}}$, set up the force balance equation and formally derive and solve the differential equations for shear stress and velocity profiles assuming laminar flow conditions (be sure to specify the proper boundary conditions as part of your derivation). Also formally derive expressions for the average axial velocity and volumetric flowrate.
b) If $\Delta p=\mathrm{p}_{0}-\mathrm{p}_{\mathrm{L}}=70 \mathrm{kPa}$, compute numerical values for the average axial velocity and volumetric flowrate for this case.
c) After the pump is stopped, the flow is downward from the upper right to lower left. Assuming fully developed steady flow, calculate numerical values for the average axial velocity and volumetric flowrate for this flow situation.

Fluid Mechanics
University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

DIMENSION	METRIC		METRIC/ENGLISH
Viscosity, kinematic	$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10^{4} \mathrm{~cm}^{2} / \mathrm{s} \\ & 1 \text { stoke }=1 \mathrm{~cm}^{2} / \mathrm{s}=10^{-4} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s}=3.875 \times 10^{2} \mathrm{ft}^{2} / \mathrm{h} \\ & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s} \end{aligned}$
Volume	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{5} \mathrm{~cm}^{3}(\mathrm{cc})$		```1 m}=6.1024\times1\mp@subsup{0}{}{4}\mathrm{ in 3}=35.315\mp@subsup{\textrm{ft}}{}{3 =264.17 gal (U.S.) l U.S. gatlon =231 in }=3.7854 l fl ounce = 29.5735 \mp@subsup{\textrm{cm}}{}{3}=0.0295735\textrm{L} 1 U.S.gatlon = 128 fl ounces```
Volume flow rate	$1 \mathrm{~m}^{3} / \mathrm{s}=60,000 \mathrm{Umin}=10^{6} \mathrm{~cm}^{3} / \mathrm{s}$		$\begin{aligned} 1 \mathrm{~m}^{3} / \mathrm{s} & =15.850 \mathrm{ga} / \mathrm{min}=35.315 \mathrm{ft}^{3} / \mathrm{s} \\ & =2118.9 \mathrm{ft} / \mathrm{min}(\text { CFM }) \end{aligned}$
-Esact corversifin iecolr betwenn metric and English units.			
Some Physical Constants			
PHYSICAL CONSTANT		METRIC	ENGLISH
Standard acceleration of gravity Standard atmospheric pressure		$\begin{aligned} g= & 9.80665 \mathrm{~m} / \mathrm{s}^{2} \\ P_{\mathrm{a}: \mathrm{m}} & =1 \mathrm{~atm}=101.325 \mathrm{hPa} \\ & =1.01325 \mathrm{bar} \\ & =760 \mathrm{~mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right) \\ & =10.3323 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} g= & 32.174 \mathrm{f} / \mathrm{s}^{2} \\ P_{\mathrm{atm}} & =1 \mathrm{~atm}=14.696 \mathrm{psia} \\ & =2116.2 \text { iof/ft } \\ & =29.9213 \text { inches } \mathrm{Hg}\left(32^{\circ} \mathrm{F}\right) \\ & =406.78 \text { inches } \mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right) \end{aligned}$
Universal gas constant		$\begin{aligned} R_{u} & =8.31447 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\ & =8.31447 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kmol} \end{aligned}$	$\begin{aligned} R_{u} & =1.9859 \mathrm{Btu} / \mathrm{lbmol} \cdot R \\ & =1545.37 \mathrm{ft} \cdot \mathrm{Ib} f / \mathrm{lbmol} \cdot R \end{aligned}$
Commonly Used Properties			
PROPERTY		METRIC	ENGLISH
Air at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 1 atm			
Specific gas constant*		$\begin{aligned} R_{\mathrm{air}} & =0.2870 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =287.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} R_{\mathrm{ait}} & =0.05855 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =53.34 \mathrm{ft} \cdot \mathrm{lb} / / \mathrm{bm} \cdot \mathrm{R} \\ & =1716 \mathrm{tt}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Specific heat ratio		$k=c_{p} / c_{v}=1.40$	$k=c_{p} / c_{v}=1.40$
Specific heats		$\begin{aligned} c_{p} & =1.007 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =1007 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \\ c_{v} & =0.7200 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =720.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c_{P} & =0.2404 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =187.1 \mathrm{ft} \cdot \mathrm{bf} / \mathrm{lbm} \cdot \mathrm{R} \\ & =6019 \mathrm{ft}^{2} \mathrm{~s}^{2} \cdot \mathrm{R} \\ c_{v} & =0.1719 \mathrm{Btu} / \mathrm{lbm} \cdot R \\ & =133.8 \mathrm{ft} \cdot \mathrm{bf} / \mathrm{lbm} \cdot \mathrm{R} \\ & =4304 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot R \end{aligned}$
Speed of sound		$c=343.2 \mathrm{~m} / \mathrm{s}=1236 \mathrm{~km} / \mathrm{h}$	$c=1126 \mathrm{ft} / \mathrm{s}=767.7 \mathrm{mi} / \mathrm{h}$
Density		$\rho=1.204 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=0.07518 \mathrm{lom} / \mathrm{ft}^{3}$
Viscosity		$\mu=1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=1.227 \times 10^{-5} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.516 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.632 \times 10^{-4} \mathrm{ft}^{2} / \mathrm{s}$
Liquid water at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 1 atm			
Specific heat ($c=c_{p}=c_{v}$)		$\begin{aligned} c & =4.182 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =4182 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c & =0.9989 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =777.3 \mathrm{ft} \cdot \mathrm{lbf/lbm} \mathrm{\cdot R} \\ & =25.009 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Density		$\rho=998.0 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=62.30 \mathrm{lbm} / \mathrm{lt}^{3}$
Viscosity		$\mu=1.002 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=6.733 \times 10^{-4} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.004 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.081 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}$

[^0]Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering

 CHEN. 3030 - Spring 2017

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q4.
The control volume shown in the sketch above is used. Application of the y direction component of the linear momentum equation yields

$$
R_{y}=0
$$

Application of the x direction linear momentum equation leads to

$$
-u_{1} \rho u_{1} A_{1}-u_{2} \rho u_{2} A_{2}=P_{1} A_{1}-R_{x}+p_{2} A_{2}
$$

From the conservation of mass equation

$$
\dot{m}=\rho u_{1} A_{1}=\rho u_{2} A_{2}
$$

Thus

$$
R_{x}=\rho u_{1} A_{1}\left(u_{1}+u_{2}\right)+p_{1} A_{1}+p_{2} A_{2}=\rho u_{1} \frac{\pi D_{1}^{2}}{4}\left(u_{1}+\frac{D_{1}^{2}}{D_{2}^{2}} u_{1}\right)+p_{1} \frac{\pi D_{1}^{2}+(0) A_{2}}{4}
$$

or

$$
R_{x}=\left(999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \frac{7 \pi}{4} \frac{(300 \mathrm{~mm})^{2}}{\left(1000 \frac{\mathrm{~mm}}{\mathrm{~m}}\right)^{2}}\left[\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\frac{(300 \mathrm{~mm})^{2}}{(160}\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\right]
$$

and

$$
+(100 \mathrm{kPa}) \frac{\pi}{4} \frac{(300 \mathrm{~mm})^{2}}{\left(1000 \frac{\mathrm{~mm}}{\mathrm{~m}}\right)^{2}}\left(1000 \frac{\mathrm{~N}}{\mathrm{~m}^{2} \cdot \mathrm{kPa}}\right)
$$

$$
R_{x}=8340 \mathrm{~N}
$$

[^0]: - Independent of pressure or temperature

