Name: \qquad Student ID: \qquad
Exam 1; Time: 5:00PM - 7:00PM; Location: Ball Hall 210; Exam type: Open book (Only text book is allowed) without any additional writing or attachment. (Do all six (6) problems, with each problem having equal weight.)

Q1. A thin 20 cm by 20 cm flat plate is pulled at $1 \mathrm{~m} / \mathrm{s}$ horizontally through a 3.6 mm -thick oil layer sandwiched between two plates, one stationary and the other moving at a constant velocity of $0.3 \mathrm{~m} / \mathrm{s}$, as shown in Figure. The dynamic viscosity of oil is $0.027 \mathrm{~Pa} \cdot \mathrm{~s}$. Assume the velocity in each oil layer varies linearly.
(a) Plot the velocity profile and find all the location where the oil velocity is zero.
(b) Determine the force that needs to be applied on the plate to maintain this motion.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q2. A device for measuring the specific gravity of a liquid consists of a U-tube manometer as shown. The manometer tube has an internal diameter of 0.5 cm and originally has only water in it. Exactly 2 cm^{3} of unknown liquid is then poured into one leg of the manometer, and a displacement of 5 cm is measured between the surfaces as shown in the sketch. For these conditions, what is the specific gravity of the unknown liquid?

Q3. The density of a liquid is to be determined by an old 1 -cm-diameter cylindrical hydrometer whose division marks are completely wiped out. The hydrometer is first dropped in water, and the water level is marked. The hydrometer is then dropped into the other liquid, and it is observed that the mark for water has risen 0.3 cm above the liquid-air interface. If the height of the original water mark is 12.3 cm , determine the density of the liquid in $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q4. A flow field has velocity components of $u=-(4 x+6) \mathrm{m} / \mathrm{s}$ and $v=10 y \mathrm{~m} / \mathrm{s}$ where x and y are in meters.
(a) Determine the equation for the streamline that passes through point $(1 \mathrm{~m}, 1 \mathrm{~m})$.
(b) Find the acceleration of a particle at the same point.

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q5. Three circular pipes are connected to the rectangular water tank as shown in the sketch. If the average velocities of water flowing through the pipes are $v_{A}=4 \mathrm{ft} / \mathrm{s}, v_{B}=6 \mathrm{ft} / \mathrm{s}$ and $v_{C}=2 \mathrm{ft} / \mathrm{s}$, determine the rate (ft / s) at which the water level in the tank changes. The tank has a width of 3.5 ft (into the page)

Fluid Mechanics
 University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

Q6. A syringe in used to inoculate a cow. The plunger has a face area of $500 \mathrm{~mm}^{2}$. The liquid in the syringe is to be injected steadily at a rate of $300 \mathrm{~cm}^{3} / \mathrm{min}$. The leakage rate past the plunger is 0.1 times the volume flowrate out of the needle. With what speed in ($\mathrm{mm} / \mathrm{min}$) should the plunger be advanced?

Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

DIMENSION	METRIC		METRIC/ENGLISH
Viscosity, kinematic	$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10^{4} \mathrm{~cm}^{2} / \mathrm{s} \\ & 1 \text { stoke }=1 \mathrm{~cm}^{2} / \mathrm{s}=10^{-4} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s}=3.875 \times 10^{2} \mathrm{ft}^{2} / \mathrm{h} \\ & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s} \end{aligned}$
Volume	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{5} \mathrm{~cm}^{3}(\mathrm{cc})$		```1 m}=6.1024\times1\mp@subsup{0}{}{4}\mathrm{ in 3}=35.315\mp@subsup{\textrm{ft}}{}{3 =264.17 gal (U.S.) l U.S. gatlon =231 in }=3.7854 l fl ounce = 29.5735 \mp@subsup{\textrm{cm}}{}{3}=0.0295735\textrm{L} 1 U.S.gatlon = 128 fl ounces```
Volume flow rate	$1 \mathrm{~m}^{3} / \mathrm{s}=60,000 \mathrm{Umin}=10^{6} \mathrm{~cm}^{3} / \mathrm{s}$		$\begin{aligned} 1 \mathrm{~m}^{3} / \mathrm{s} & =15.850 \mathrm{ga} / \mathrm{min}=35.315 \mathrm{ft}^{3} / \mathrm{s} \\ & =2118.9 \mathrm{ft} / \mathrm{min}(\text { CFM }) \end{aligned}$
-Esact corversifin iecolr betwenn metric and English units.			
Some Physical Constants			
PHYSICAL CONSTANT		METRIC	ENGLISH
Standard acceleration of gravity Standard atmospheric pressure		$\begin{aligned} g= & 9.80665 \mathrm{~m} / \mathrm{s}^{2} \\ P_{\mathrm{a}: \mathrm{m}} & =1 \mathrm{~atm}=101.325 \mathrm{hPa} \\ & =1.01325 \mathrm{bar} \\ & =760 \mathrm{~mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right) \\ & =10.3323 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} g= & 32.174 \mathrm{f} / \mathrm{s}^{2} \\ P_{\mathrm{atm}} & =1 \mathrm{~atm}=14.696 \mathrm{psia} \\ & =2116.2 \text { iof/ft } \\ & =29.9213 \text { inches } \mathrm{Hg}\left(32^{\circ} \mathrm{F}\right) \\ & =406.78 \text { inches } \mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right) \end{aligned}$
Universal gas constant		$\begin{aligned} R_{u} & =8.31447 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\ & =8.31447 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kmol} \end{aligned}$	$\begin{aligned} R_{u} & =1.9859 \mathrm{Btu} / \mathrm{lbmol} \cdot R \\ & =1545.37 \mathrm{ft} \cdot \mathrm{Ib} f / \mathrm{lbmol} \cdot R \end{aligned}$
Commonly Used Properties			
PROPERTY		METRIC	ENGLISH
Air at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 1 atm			
Specific gas constant*		$\begin{aligned} R_{\mathrm{air}} & =0.2870 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =287.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} R_{\mathrm{ait}} & =0.05855 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =53.34 \mathrm{ft} \cdot \mathrm{lb} / / \mathrm{bm} \cdot \mathrm{R} \\ & =1716 \mathrm{tt}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Specific heat ratio		$k=c_{p} / c_{v}=1.40$	$k=c_{p} / c_{v}=1.40$
Specific heats		$\begin{aligned} c_{p} & =1.007 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =1007 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \\ c_{v} & =0.7200 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =720.0 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c_{P} & =0.2404 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =187.1 \mathrm{ft} \cdot \mathrm{bf} / \mathrm{lbm} \cdot \mathrm{R} \\ & =6019 \mathrm{ft}^{2} \mathrm{~s}^{2} \cdot \mathrm{R} \\ c_{v} & =0.1719 \mathrm{Btu} / \mathrm{lbm} \cdot R \\ & =133.8 \mathrm{ft} \cdot \mathrm{bf} / \mathrm{lbm} \cdot \mathrm{R} \\ & =4304 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot R \end{aligned}$
Speed of sound		$c=343.2 \mathrm{~m} / \mathrm{s}=1236 \mathrm{~km} / \mathrm{h}$	$c=1126 \mathrm{ft} / \mathrm{s}=767.7 \mathrm{mi} / \mathrm{h}$
Density		$\rho=1.204 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=0.07518 \mathrm{lom} / \mathrm{ft}^{3}$
Viscosity		$\mu=1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=1.227 \times 10^{-5} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.516 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.632 \times 10^{-4} \mathrm{ft}^{2} / \mathrm{s}$
Liquid water at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right.$) and 1 atm			
Specific heat ($c=c_{p}=c_{v}$)		$\begin{aligned} c & =4.182 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =4182 \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} c & =0.9989 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & =777.3 \mathrm{ft} \cdot \mathrm{lbf/lbm} \mathrm{\cdot R} \\ & =25.009 \mathrm{ft}^{2} / \mathrm{s}^{2} \cdot \mathrm{R} \end{aligned}$
Density		$\rho=998.0 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho=62.30 \mathrm{lbm} / \mathrm{lt}^{3}$
Viscosity		$\mu=1.002 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$	$\mu=6.733 \times 10^{-4} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
Kinematic viscosity		$\nu=1.004 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$	$\nu=1.081 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}$

[^0]Fluid Mechanics

University of Massachusetts, Lowell - Department of Chemical Engineering CHEN. 3030 - Spring 2017

DIMENSION	METRIC	METRIC/ENGLISH
Acceleration	$1 \mathrm{~m} / \mathrm{s}^{2}=100 \mathrm{~cm} / \mathrm{s}^{2}$	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s}^{2}=3.2808 \mathrm{ft} / \mathrm{s}^{2} \\ & 1 \mathrm{ft} \mathrm{~s}^{2}=0.3048^{*} \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$
Area	$1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}=10^{6} \mathrm{~mm}^{2}=10^{-6} \mathrm{~km}^{2}$.	$\begin{aligned} & 1 \mathrm{~m}^{2}=1550 \mathrm{in}^{2}=10.764 \mathrm{ft}^{2} \\ & 1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}=0.09290304^{*} \mathrm{~m}^{2} \end{aligned}$
Density	$1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~kg} / \mathrm{L}=1000 \mathrm{~kg} / \mathrm{m}^{3}$	$\begin{aligned} & 1 \mathrm{~g} / \mathrm{cm}^{3}=62.428 \mathrm{lbm} / \mathrm{ft}^{3}=0.036127 \mathrm{lbm} / \mathrm{in}^{3} \\ & 1 \mathrm{lbm} / \mathrm{in}^{3}=1728 \mathrm{Ibm} / \mathrm{ft}^{3} \\ & 1 \mathrm{~kg} / \mathrm{m}^{3}=0.062428 \mathrm{lbm} / \mathrm{ft}^{3} \end{aligned}$
Energy, heat, work, and specific energy	$\begin{aligned} & 1 \mathrm{~kJ}=1000 \mathrm{~J}=1000 \mathrm{~N}: \mathrm{m}=1 \mathrm{kPa} \cdot \mathrm{~m}^{3} . \\ & 1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2} \\ & 1 \mathrm{kWh}=3600 \mathrm{~kJ} \end{aligned}$	$\begin{aligned} 1 \mathrm{~kJ} & =0.94782 \mathrm{Btu} \\ \mathrm{l} \mathrm{Btu} & =1.055056 \mathrm{~kJ} \\ & =5.40395 \mathrm{psia} \cdot \mathrm{ft}^{3}=778.169 \mathrm{lbf} \cdot \mathrm{ft} \\ 1 \mathrm{Btu} / \mathrm{lbm} & =25.037 \mathrm{ft}^{2} / \mathrm{s}^{2}=2.326^{\star} \mathrm{kJ} / \mathrm{kg} \\ 1 \mathrm{kWh} & =3412.14 \mathrm{Btu} \end{aligned}$
Force	$\begin{aligned} & 1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=10^{5} \mathrm{dyne} \\ & 1 \mathrm{kgf}=9.80665 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~N}=0.22481 \mathrm{lbf} \\ & 1 \mathrm{lbf}=32.174 \mathrm{lbm} \cdot \mathrm{ft} / \mathrm{s}^{2}=4.44822 \mathrm{~N} \\ & 1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2} \end{aligned}$
Length	$\begin{aligned} & 1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=10^{6} \mu \mathrm{~m} \\ & 1 \mathrm{~km}=1000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m}=39.370 \mathrm{in}=3.2808 \mathrm{ft}=1.0926 \mathrm{yd} \\ & 1 \mathrm{ft}=12 \mathrm{in}=0.3048^{*} \mathrm{~m} \\ & \mathrm{l} \text { mile }=5280 \mathrm{ft}=1.6093 \mathrm{~km} \\ & \mathrm{l} \text { in }=2.54^{*} \mathrm{~cm} \end{aligned}$
Mass	$\begin{aligned} & 1 \mathrm{~kg}=1000 \mathrm{~g} \\ & 1 \text { metric ton }=1000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~kg}=2.2046226 \mathrm{lbm} \\ & 1 \mathrm{lbm}=0.45359237^{*} \mathrm{~kg} \\ & 1 \text { ounce }=28.3495 \mathrm{~g} \\ & 1 \text { slug }=32.174 \mathrm{lbm}=14.5939 \mathrm{~kg} \\ & 1 \text { short ton }=2000 \mathrm{lbm}=907.1847 \mathrm{~kg} \end{aligned}$
Power	$\begin{aligned} & 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} \\ & 1 \mathrm{~kW}=1000 \mathrm{~W}=1 \mathrm{~kJ} / \mathrm{s} \\ & 1 \mathrm{hp}^{\mathrm{t}}=745.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} 1 \mathrm{~kW} & =3412.14 \mathrm{Btu} / \mathrm{h}=1.341 \mathrm{hp} \\ & =737.56 \mathrm{lbf} \cdot \mathrm{ft} / \mathrm{s} \\ 1 \mathrm{hp} & =550 \mathrm{lbf} \cdot \mathrm{ft} / \mathrm{s}=0.7068 \mathrm{Btu} / \mathrm{s} \\ & =42.41 \mathrm{Btu} / \mathrm{min}=2544.5 \mathrm{Btu} / \mathrm{h} \\ & =0.74570 \mathrm{~kW} \\ 1 \mathrm{Btu} / \mathrm{h} & =1.055056 \mathrm{~kJ} / \mathrm{h} \end{aligned}$
Pressure or stress, and pressure expressed as a head	$\begin{aligned} & 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2} \\ & 1 \mathrm{kPa} \end{aligned}=10^{3} \mathrm{~Pa}=10^{-3} \mathrm{MPa} .$	$\begin{aligned} & 1 \mathrm{~Pa}=1.4504 \times 10^{-4} \mathrm{psi} \\ &=0.020886 \mathrm{lbf} / \mathrm{ft}^{2} \\ & 1 \mathrm{psi}=144 \mathrm{lbf} / \mathrm{ft}^{2}=6.894757 \mathrm{kPa} \\ & 1 \mathrm{~atm}=14.696 \mathrm{psi} \\ &=29.92 \text { inches } \mathrm{Hg} \text { at } 30^{\circ} \mathrm{F} \\ & 1 \text { inch } \mathrm{Hg}=13.60 \text { inches } \mathrm{H}_{2} \mathrm{O}=3.387 \mathrm{kPa} \end{aligned}$
Specific heat	$\begin{aligned} 1 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} & =1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}=4.1868 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \\ & 1 \mathrm{Btu} / \mathrm{lmmol} \cdot \mathrm{R}=4.1868 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\ & 1 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}=0.23885 \mathrm{Btu} / \mathrm{bm} \cdot{ }^{\circ} \mathrm{F} \\ &=0.23885 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \end{aligned}$
Specific volume	$\begin{aligned} 1 \mathrm{~m}^{3} / \mathrm{kg} & =1000 \mathrm{~L} / \mathrm{kg} \\ & =1000 \mathrm{~cm}^{3} / \mathrm{g} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m}^{3} / \mathrm{kg}=16.02 \mathrm{ft}^{3} / \mathrm{lbm} \\ & 1 \mathrm{ft}^{3} / \mathrm{lbm}=0.062428 \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$
Temperature	$\begin{aligned} & \left.T(\mathrm{~K})=\pi^{\circ} \mathrm{C}\right)+273.15 \\ & \left.\Delta T(\mathrm{~K})=\Delta T^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \left.T(R)=\pi^{\circ} \mathrm{F}\right)+459.67=1.8 \pi(\mathrm{~K}) \\ & \left.T^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+32 \\ & \left.\left.\Delta T{ }^{\circ} \mathrm{F}\right)=\Delta \pi(R)=1.8^{*} \Delta \pi \mathrm{~K}\right) \end{aligned}$
Velocity	$1 \mathrm{~m} / \mathrm{s}=3.60 \mathrm{~km} / \mathrm{h}$	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s}=3.2808 \mathrm{ft} / \mathrm{s}=2.237 \mathrm{mi} / \mathrm{h} \\ & 1 \mathrm{mi} / \mathrm{h}=1.46667 \mathrm{ft} / \mathrm{s} \\ & 1 \mathrm{mi} / \mathrm{h}=1.6093 \mathrm{~km} / \mathrm{h} \end{aligned}$
Viscosity, dynamic	$1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}=1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}=1 \mathrm{~Pa} \cdot \mathrm{~s}=10$ poise	$\begin{aligned} 1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} & =2419.1 \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{~h} \\ & =0.020886 \mathrm{lbf} \cdot \mathrm{~s} / \mathrm{ft}^{2} \\ & =0.67197 \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{~s} \end{aligned}$

[^0]: - Independent of pressure or temperature

